Abstract

Cholera is a water and food borne infectious disease caused by the gram-negative bacterium, Vibrio cholerae. Its dynamics are highly complex owing to the coupling among multiple transmission pathways and different factors in pathogen ecology. Although various mathematical models and clinical studies published in recent years have made important contribution to cholera epidemiology, our knowledge of the disease mechanism remains incomplete at present, largely due to the limited understanding of the dynamics of cholera. In this paper, we conduct global stability analysis for several deterministic cholera epidemic models. These models, incorporating both human population and pathogen V. cholerae concentration, constitute four-dimensional non-linear autonomous systems where the classical Poincaré-Bendixson theory is not applicable. We employ three different techniques, including the monotone dynamical systems, the geometric approach, and Lyapunov functions, to investigate the endemic global stability for several biologically important cases. The analysis and results presented in this paper make building blocks towards a comprehensive study and deeper understanding of the fundamental mechanism in cholera dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.