Abstract

An HIV/AIDS epidemic model with different latent stages and treatment is constructed. The model allows for the latent individuals to have the slow and fast latent compartments. Mathematical analyses establish that the global dynamics of the spread of the HIV infectious disease are determined by the basic reproduction number under some conditions. If R0<1, the disease free equilibrium is globally asymptotically stable, and if R0>1, the endemic equilibrium is globally asymptotically stable for a special case. Some numerical simulations are also carried out to confirm the analytical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.