Abstract
In this paper, we propose a discrete-time SIS epidemic model which is derived from continuous-time SIS epidemic models with immigration of infectives by the backward Euler method. For the discretized model, by applying new Lyapunov function techniques, we establish the global asymptotic stability of the disease-free equilibrium for and the endemic equilibrium for , where R 0 is the basic reproduction number of the continuous-time model. This is just a discrete analogue of a continuous SIS epidemic model with immigration of infectives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.