Abstract

In this paper, by applying Lyapunov functional approach, we establish a sufficient condition on the global stability of a "delayed" multi-group SIRS epidemic model with cure rate and incomplete recovery rate which does not depend on the delays and is an extension of the "light drug model" studied in the recent paper [Muroya, Li and Kuniya, Complete global analysis of an SIRS epidemic model with graded cure rate and incomplete recovery rate, J. Math. Anal. Appl. 410 (2014) 719–732] to a multi-group model. Applying a Lyapunov functional on total population of each compartment, we offer new techniques for the delayed system, how to prove the permanence, the existence of the endemic equilibrium and the global stability of disease-free equilibrium for the reproduction number [Formula: see text] and endemic equilibrium for [Formula: see text].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.