Abstract

A HIV virus-to-cell dynamical model with distributed delay and Beddington-DeAngelis functional response is proposed in this paper. Using the characteristic equations and analytical means, the principle reproduction number R0 on the local stability of infection-free and chronic-infection equilibria is established. Furthermore, by constructing suitable Lyapunov functionals and using LaSalle invariance principle, we show that if R0 ≤ 1 the infection-free equilibrium is globally asymptotically stable, while if R0 > 1 the chronic-infection equilibrium is globally asymptotically stable. Numerical simulations are presented to illustrate the theoretical results. Comparing the effects between discrete and distributed delays on the stability of HIV virus-to-cell dynamical models, we can see that they could be same and different even opposite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call