Abstract

The primary objective of the paper is to investigate the post buckled behaviour of the single-layered Kite geometry dome developed using a novel crystallographic parameterisation principle. Both triangulated and non-triangulated domes are evolved based on the crystallographic parameterisation principles. It brings in a unique nomenclature for identifying different tessellations in reticulated single-layer dome configurations. This nomenclature brings in a physical meaning to dome tessellations instead of being called by the inventors such as Schwedler dome etc. In this paper, the effect of surface pattern on the load capacity of dome configuration is demonstrated with the comparison of domes having different surface patterns. The comparison of post-buckling behaviour of two different single-layer dome configurations - Kiewitt dome and Kite dome is presented. Despite having rigid nodal joints, the load capacity of the dome is significantly reduced when subjected to unsymmetrical and collateral loads due to the localised effect of these loads and the increased chance of snap-through compared to symmetrical uniform loading acting all over the structure. The Kite geometry have higher performance under uniform gravity loading with a low rise to span ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.