Abstract
Abstract In this paper, we study the global stability and attractivity of the endemic equilibrium for a network-based SIS epidemic model with nonmonotone incidence rate. The model was introduced in Li (2015). We prove that the endemic equilibrium is globally asymptotically stable if α (a parameter of this model) is sufficiently large, and is globally attractive if the transmission rate λ satisfies λ λ c ∈ ( 1 , 2 ] , where λ c is the epidemic threshold. Some numerical experiments are also presented to illustrate the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.