Abstract

We study a susceptible–infected–susceptible model with distributed delays. By constructing suitable Lyapunov functionals, we demonstrate that the global dynamics of this model is fully determined by the basic reproductive ratio R0. To be specific, we prove that if R0 ≤ 1, then the disease-free equilibrium is globally asymptotically stable. On the other hand, if R0>1, then the endemic equilibrium is globally asymptotically stable. It is remarkable that the model dynamics is independent of the probability of immunity lost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.