Abstract
In this paper, a novel class of Cohen–Grossberg neural networks with delays and inverse Hölder neuron activation functions are presented. By using the topological degree theory and linear matrix inequality (LMI) technique, the existence and uniqueness of equilibrium point for such Cohen–Grossberg neural networks is investigated. By constructing appropriate Lyapunov function, a sufficient condition which ensures the global exponential stability of the equilibrium point is established. Two numerical examples are provided to demonstrate the effectiveness of the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.