Abstract

The present paper investigates the global instability mechanisms of arrayed-cellular growth with asymptotic approach. We find that the system of directional solidification involves two types of global instability mechanisms: the low-frequency instability and the global oscillatory instability, which are profoundly similar to that found in the system of viscous fingering and free dendritic growth. Based on these global instabilities, the neutral mode selection principle for the limiting state of growth is proposed; the origin and essence of side branching on the interface are elucidated with the so-called global trapped wave mechanism, which involves the interfacial wave reflection and amplification along the interface. It is demonstrated that side branching is self-sustaining and can persist without continuously applying the external noise; the effect of the anisotropy of interfacial energy is not essential for the selection of steady cellular growth and for the origin and formation of side branching at the interface. The comparisons of theoretical results are made with the most recent experimental works and the numerical simulations which show very good quantitative agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.