Abstract
In this paper, we propose a novel supervised learning method called Global Sparse Representation Projections (GSRP) for linear dimensionality reduction. GSRP can be viewed as a combiner of sparse representation and manifold learning. But differing from the recent manifold learning methods such as Local Preserving Projections (LPP), GSRP introduces the global sparse representation information into the objective function. Since sparse representation can implicitly employ the structure of the data by imposing the sparsity prior, we take advantages of this property to characterize the local structure. By combining the local interclass neighborhood relationship and sparse representation information, GSRP aims to preserve the sparse reconstructive relationship of the data and simultaneously maximize the interclass separability. Comprehensive comparison and extensive experiments show that GSRP achieves higher recognition rates than the state-of-the-art techniques such as LPP and Sparsity Preserving Projections (SPP).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.