Abstract
We consider the motion of incompressible viscous fluids bounded above by a free surface and below by a solid surface in the N-dimensional Euclidean space for N≥2. The aim of this paper is to show the global solvability of the Navier–Stokes equations with a free surface, describing the above-mentioned motion, in the maximal Lp-Lq regularity class. Our approach is based on the maximal Lp-Lq regularity with exponential stability for the linearized equations, and also it is proved that solutions to the original nonlinear problem are exponentially stable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.