Abstract
We prove existence of global regular solutions for the $3$D Navier-Stokes equations with (or without) Coriolis force for a class of initial data $u_0$ in the space ${{{\mathrm{FM}}}_{\sigma,\delta}}$, i.e., for functions whose Fourier image ${\widehat{u}}_0$ is a vector-valued Radon measure and that are supported in sum-closed frequency sets with distance $\delta$ from the origin. In our main result we establish an upper bound for admissible initial data in terms of the Reynolds number, uniform on the Coriolis parameter $\Omega$. In particular this means that this upper bound is linearly growing in $\delta$. This implies that we obtain global-in-time regular solutions for large (in norm) initial data $u_0$ which may not decay at space infinity, provided that the distance $\delta$ of the sum-closed frequency set from the origin is sufficiently large.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.