Abstract
We introduce the study of global existence and blow-up in finite time for nonlinear diffusion equations with flux at the boundary governed by memory. Via a simple transformation, the memory term arises out of a corresponding model introduced in previous studies of tumor-induced angiogenesis. The present study is also in the spirit of extending work on models of the heat equation with local, nonlocal, and delay nonlinearities present in the boundary flux. Specifically, we establish an identical set of necessary and sufficient conditions for blow-up in finite time as previously established in the case of local flux conditions at the boundary.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.