Abstract

In a Hilbert space, we consider a class of nonlinear fractional equations having the Caputo fractional derivative of the time variable t and the space fractional function of the self-adjoint positive unbounded operator. We consider various cases of global Lipschitz and local Lipschitz source with time-singular coefficient. These sources are generalized of the well–known fractional equations such as the fractional Cahn–Allen equation, the fractional Burger equation, the fractional Cahn–Hilliard equation, the fractional Kuramoto–Sivashinsky equation, etc. Under suitable assumptions, we investigate the existence, uniqueness of maximal solution, and stability of solution of the problems with respect to perturbed fractional orders. We also establish some global existence and prove that the global solution can be approximated by known asymptotic functions as \(t\rightarrow \infty \).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.