Abstract

If a dynamical problem ofN degress of freedom is reduced to the Ideal Resonance Problem, the Hamiltonian takes the form 1 $$\begin{array}{*{20}c} {F = B(y) + 2\mu ^2 A(y)\sin ^2 x_1 ,} & {\mu \ll 1.} \\ \end{array} $$ Herey is the momentum-vectory k withk=1,2−N, x 1 is thecritical argument, andx k fork>1 are theignorable co-ordinates, which have been eliminated from the Hamiltonian. The purpose of this Note is to summarize the first-order solution of the problem defined by (1) as described in a sequence of five recent papers by the author. A basic is the resonance parameter α, defined by 1 $$\alpha \equiv - B'/\left| {4AB''} \right|^{1/2} \mu .$$ The solution isglobal in the sense that it is valid for all values of α2 in the range 1 $$0 \leqslant \alpha ^2 \leqslant \infty ,$$ which embrances thelibration and thecirculation regimes of the co-ordinatex 1, associated with α2 1, respectively. The solution includes asymptotically the limit α2 → ∞, which corresponds to theclassical solution of the problem, expanded in powers of e ≡ μ2, and carrying α as a divisor. The classical singularity at α=0, corresponding to an exact commensurability of two frequencies of the motion, has been removed from the global solution by means of the Bohlin expansion in powers of μ = e1/2. The singularities that commonly arise within the libration region α2 < 1 and on the separatrix α2 = 1 of the phase-plane have been suppressed by means of aregularizing function 1 $$\begin{array}{*{20}c} {\phi \equiv \tfrac{1}{2}(1 + \operatorname{sgn} z)\exp ( - z^{ - 3} ),} & {z \equiv \alpha ^2 } \\ \end{array} - 1,$$ introduced into the new Hamiltonian. The global solution is subject to thenormality condition, which boundsAB″ away from zero indeep resonance, α2 1/μ, where the classical solution is valid. Thedemarcation point 1 $$\alpha _ * ^2 \equiv {1 \mathord{\left/ {\vphantom {1 \mu }} \right. \kern-\nulldelimiterspace} \mu }$$ conventionally separates the deep and the shallow resonance regions. The solution appears in parametric form 1 $$\begin{array}{*{20}c} {x_\kappa = x_\kappa (u)} \\ {y_1 = y_1 (u)} \\ {\begin{array}{*{20}c} {y_\kappa = conts,} & {k > 1,} \\ \end{array} } \\ {u = u(t).} \\ \end{array} $$ It involves the standard elliptic integralsu andE((u) of the first and the second kinds, respectively, the Jacobian elliptic functionssn, cn, dn, am, and the Zeta functionZ (u).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.