Abstract
We study the initial boundary value problem of a semilinear heat equation with logarithmic nonlinearity. By using the logarithmic Sobolev inequality and a family of potential wells, we obtain the existence of global solution and blow-up at +∞ under some suitable conditions. On the other hand, the results for decay estimates of the global solutions are also given. Our result in this paper means that the polynomial nonlinearity is a critical condition of blow-up in finite time for the solutions of semilinear heat equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.