Abstract

Global solar radiation is the sum total of all radiation reaching the earth surface i.e. it includes: the direct and the diffused solar radiation reaching the earth surface. The instrument used for measuring this very important component arriving from the whole hemisphere is the pyranometer. This is one of the most important parameter for applications, developments and researches related to alternative source of clean and renewable energy. In cases where these data are not available, it is very common to use computational models to estimate the missing data, which are based mainly on the search for relationships between weather variables, such as temperature, humidity, precipitation, cloud cover and sunshine hours, among others. In this research work, the baseline data for mean monthly global solar radiation and sunshine hours for three (3) geopolitical zones of Nigeria (sub-sahara regions of Nigeria) with Sokoto (North-western Nigeria) (12.910N, 5.200E), Maiduguri (North-eastern Nigeria) (11.850N, 13.080E) and Ilorin (North- Central Nigeria) (8.430N, 4.500E) were obtained from the Nigeria Metrological Agency (NIMET), Nigeria which spread from 1996 to 2010. A linear regression correlation model was developed and clearness index estimated for each station in this study. The result shows the Angstrom coefficients and for estimating global solar radiation for zone respectively, using the Angstrom-Prescott model. The average global solar radiation for these stations was estimated, results subjected to statistical tests proven to be good estimates. The study concluded that the Angstrom- Prescott model plays a significant role in predicting and estimating solar energy potentials in these regions

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call