Abstract
Global solar radiation is the sum total of all radiation reaching the earth surface i.e. it includes: the direct and the diffused solar radiation reaching the earth surface. The instrument used for measuring this very important component arriving from the whole hemisphere is the pyranometer. This is one of the most important parameter for applications, developments and researches related to alternative source of clean and renewable energy. In cases where these data are not available, it is very common to use computational models to estimate the missing data, which are based mainly on the search for relationships between weather variables, such as temperature, humidity, precipitation, cloud cover and sunshine hours, among others. In this research work, the baseline data for mean monthly global solar radiation and sunshine hours for three (3) geopolitical zones of Nigeria (sub-sahara regions of Nigeria) with Sokoto (North-western Nigeria) (12.910N, 5.200E), Maiduguri (North-eastern Nigeria) (11.850N, 13.080E) and Ilorin (North- Central Nigeria) (8.430N, 4.500E) were obtained from the Nigeria Metrological Agency (NIMET), Nigeria which spread from 1996 to 2010. A linear regression correlation model was developed and clearness index estimated for each station in this study. The result shows the Angstrom coefficients and for estimating global solar radiation for zone respectively, using the Angstrom-Prescott model. The average global solar radiation for these stations was estimated, results subjected to statistical tests proven to be good estimates. The study concluded that the Angstrom- Prescott model plays a significant role in predicting and estimating solar energy potentials in these regions
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.