Abstract

Abstract. Surface soils interact strongly with both climate and biota and provide fundamental ecosystem services that maintain food, climate and human security. However, the quantitative linkages between soil properties, climate and biota remain unclear at the global scale. By compiling a comprehensive global soil database, we mapped eight major soil properties (bulk density; clay, silt, and sand fractions; soil pH; soil organic carbon, SOC, density; soil total nitrogen, STN, density; and soil C:N mass ratios) in the surface soil layer (0–30 cm), based on machine learning algorithms, and demonstrated the quantitative linkages between surface soil properties, climate and biota at the global scale, which we call the global soil–climate–biome diagram. In the diagram, bulk density increased significantly with higher mean annual temperature (MAT) and lower mean annual precipitation (MAP); soil clay fraction increased significantly with higher MAT and MAP; soil pH decreased with higher MAP and lower MAT and the “critical MAP”, which means the corresponding MAP at a soil pH of =7.0 (a shift from alkaline to acidic soil), decreased with lower MAT. SOC density and STN density were both jointly affected by MAT and MAP, showing an increase at lower MAT and a saturation towards higher MAP. Surface soil physical and chemical properties also showed remarkable variation across biomes. The soil–climate–biome diagram suggests shifts in soil properties under global climate and land cover change.

Highlights

  • As a critical component of the Earth system, soils influence many ecological processes that provide fundamental ecosystem services (Amundson et al, 2015; Milne et al, 2015; Adhikari and Hartemink, 2016)

  • On the basis of the Whittaker biome diagram, which illustrates the essential role of climate in shaping the spatial pattern of global biomes (Whittaker, 1962), we further developed a global soil–climate–biome diagram by plotting each soil property on a climate basis, as climate and vegetation are two key soil-forming factors (Jenny, 1941)

  • By compiling a comprehensive global soil database, we mapped eight surface soil properties based on machine learning algorithms and assessed the quantitative linkages between soil properties, climate and biota at the global scale

Read more

Summary

Introduction

As a critical component of the Earth system, soils influence many ecological processes that provide fundamental ecosystem services (Amundson et al, 2015; Milne et al, 2015; Adhikari and Hartemink, 2016). Soil physical properties, such as bulk density and soil texture, are important for water retention and the preservation of carbon (C) and nutrients (Hassink, 1997; Sposito et al, 1999; Castellano and Kaye, 2009; Stockmann et al, 2013; Jilling et al, 2018), whereas soil chemical properties, such as soil acidity (pH), organic C and nutrient contents, are essential regulators of nutrient availability and plant growth, further affecting C and nutrient cycling as well as vegetation–climate feedbacks (Davidson and Janssens, 2006; Chapin III et al, 2009; Milne et al, 2015). Recent progress has been made by compiling larger numbers

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call