Abstract

The change in Soil Moisture Content (SMC) is one of the most crucial variables for regulating and analyzing basic hydrological processes, including runoff, evaporation, carbon and energy cycles, infiltration of water resources, droughts and floods, and desertification. This study aimed to detect and map the global SMC change using microwave remote sensing observations. Monthly SMC data from the Soil Moisture Ocean Salinity (SMOS) with a spatial resolution of 25 km were used to assess the SMC change from January 2010 to December 2021. Various trend patterns, including linear, quadratic, cubic, and concealed, were examined by applying a parametric polynomial fitting-based algorithm (Polytrend). In particular, approximately 16.93% of global land is subjected to soil moisture dynamics, of which 8.33% has become drier and 8.60% has become wetter. Both linear and nonlinear trends were observed in the global land areas that have experienced statistically significant changes. The concealed and linear trends were however the dominant trend patterns globally. The obtained trend results were further investigated using a well-known non-parametric trend test, Mann-Kendall, which showed 93.20% agreement, demonstrating the robustness and reliability of the observed trends.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call