Abstract

Although microplastics (1 μm - 5 mm, MP) are increasingly recognised as a novel entity of pollutants, we still lack a basic understanding of their prevalence in different terrestrial environments. Here, we aimed at performing comparisons of MP concentrations (items kg−1) in different agro-ecosystems, with specific focus on input pathways and land uses, while accounting for the plethora of method variations available, such as analysed MP sizes, sampling depths, density separation solutions, as well as removal of organic matter. We found that the current global means of MP loads, from 89 studies (553 sites), benchmarks 2900 ± 7600 MP items kg−1 soil, substantially more than the global median of 480 MP items kg−1. Roughly 81 % of the studies were conducted in Asia; hence, continent-wider comparisons are still hampered by low study numbers for most regions. Maximum MP numbers were found for soils under both greenhouses and plastic mulching (5200 ± 8300 items kg−1), followed by arable soils with sludge amendments (3700 ± 8800 items kg−1), surprisingly without evidence of elevated MP loads in horticultural fields relative to other agricultural management practices. Intriguingly, global MP loads significantly increased with decreasing levels of urbanisation, i.e., they were highest in rural areas. Yet, quantitative comparisons among sites are biased by the methodology selected for MP analyses. Apart from inconsistencies in sampling depth and size of screened MP particles, across all sites and treatments, largest MP loads were commonly found when using high-density solutions rather than low-density ones, and when soil organic matter removal was performed after and not before the density separation step.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.