Abstract
In this paper the global symmetry of the Hubbard model on a bipartite lattice is found to be larger than SO(4). The model is one of the most studied many-particle quantum problems, yet except in one dimension it has no exact solution, so that there remain many open questions about its properties. Symmetry plays an important role in physics and often can be used to extract useful information on unsolved non-perturbative quantum problems. Specifically, here it is found that for on-site interaction U ≠ 0 the local SU(2) × SU(2) × U(1) gauge symmetry of the Hubbard model on a bipartite lattice with N a D sites and vanishing transfer integral t = 0 can be lifted to a global [ SU(2) × SU(2) × U(1)]/ Z 2 2 = SO(3) × SO(3) × U(1) symmetry in the presence of the kinetic-energy hopping term of the Hamiltonian with t > 0. (Examples of a bipartite lattice are the D-dimensional cubic lattices of lattice constant a and edge length L = N a a for which D = 1, 2, 3,... in the number N a D of sites.) The generator of the new found hidden independent charge global U(1) symmetry, which is not related to the ordinary U(1) gauge subgroup of electromagnetism, is one half the rotated-electron number of singly occupied sites operator. Although addition of chemical-potential and magnetic-field operator terms to the model Hamiltonian lowers its symmetry, such terms commute with it. Therefore, its 4 N a D energy eigenstates refer to representations of the new found global [ SU(2) × SU(2) × U(1)]/ Z 2 2 = SO(3) × SO(3) × U(1) symmetry. Consistently, we find that for the Hubbard model on a bipartite lattice the number of independent representations of the group SO(3) × SO(3) × U(1) equals the Hilbert-space dimension 4 N a D . It is confirmed elsewhere that the new found symmetry has important physical consequences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.