Abstract

We study here the Cauchy problem associated with the isentropic and compressible Euler equations for Chaplygin gases. Based on the new formulation of the compressible Euler equations in J. Luk and J. Speck [The hidden null structure of the compressible Euler equations and a prelude to applications, J. Hyperbolic Differ. Equ. 17 (2020) 1–60] we show that the wave system satisfied by the modified density and the velocity for Chaplygin gases satisfies the weak null condition. We then prove the global existence of smooth solutions to the irrotational and isentropic Chaplygin gases without introducing a potential function, when the initial data are small perturbations to a constant state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.