Abstract

A global smooth sliding mode controller (GSSMC) is proposed for flexible air-breathing hypersonic vehicle (FAHV) under actuator faults and parametric uncertainties, consisting of global fast finite-time integral sliding surface (GFFIS), generalized smooth second-order sliding mode reaching law (GSRL) and smooth fixed-time observer. Firstly, nonlinear control-oriented model of FAHV is processed using input/output feedback linearization with flexible effects and actuator faults modeling as lumped matched disturbances. Secondly, a GFFIS is established to ensure finite-time convergence of states without singularity based on a newly proposed fast finite-time high-order regulator (FFR). The FFR is improved from standard finite-time high-order regulator via dilation rescaling, which can accelerate response speed avoiding complicated parameters selection. Meanwhile, GFFIS can eliminate initial reaching phase to enhance robustness of system due to characteristic of global convergence. Thirdly, a GSRL is presented to ensure finite-time convergence of sliding mode vector and its derivative without chattering based on a generalized smooth second-order sliding mode control algorithm, the stability and finite convergence time of which is analyzed via Lyapunov criteria in detail. Then, a smooth fixed-time observer is applied to estimate lumped disturbances in fixed time and avoid effects of parametric uncertainties. With the three components, GSSMC can drive FAHV subject to actuator faults and parametric uncertainties to follow desired values in finite time with smooth control signals. Ultimately, three sets of simulations are performed to verify the effectiveness of the methods proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call