Abstract

Abstract In the early stages of a protoplanetary disk, turbulence generated by gravitational instability (GI) should feature significantly in the disk’s evolution. At the same time, the disk may be sufficiently ionized for magnetic fields to play some role in the dynamics. In this paper, we report on global three-dimensional magnetohydrodynamical simulations of a self-gravitating protoplanetary disk using the meshless finite mass Lagrangian technique. We confirm that GI spiral waves trigger a dynamo that amplifies an initial magnetic field to nearly thermal amplitudes (plasma β < 10), an order of magnitude greater than that generated by the magnetorotational instability alone. We also determine the dynamo’s nonlinear back reaction on the gravito-turbulent flow: the saturated state is substantially hotter, with an associated larger Toomre parameter and weaker, more “flocculent” spirals. But perhaps of greater import is the dynamo’s boosting of accretion via a significant Maxwell stress; mass accretion is enhanced by factors of several relative to either pure GI or pure magnetorotational instability. Our simulations use ideal MHD, an admittedly poor approximation in protoplanetary disks, and thus, future studies should explore the full gamut of nonideal MHD. In preparation for that, we exhibit a small number of ohmic runs that reveal that the dynamo, if anything, is stronger in a nonideal environment. This work confirms that magnetic fields are a potentially critical ingredient in gravito-turbulent young disks, possibly controlling their evolution, especially via their enhancement of (potentially episodic) accretion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.