Abstract

Faithful representation of pairwise pixel affinities is crucial for the outcome of spectral segmentation methods. In conventional affinity models only close-range pixels interact, and a variety of subsequent techniques aims at faster propagation of local grouping cues across long-range connections. In this paper we propose a general framework for constructing a full-range affinity matrix. Our affinity matrix consists of a global similarity matrix and an additive proximity matrix. The similarity in appearance, including intensity and texture, is encoded for each pair of image pixels. Despite being full-range, our similarity matrix has a simple decomposition, which exploits an assignment of image pixels to dictionary elements. The additive proximity enforces smoothness to the segmentation by imposing interactions between near-by pixels. Our approach allows us to assess the advantages of using a full-range affinity for various spectral segmentation problems. Within our general framework we develop a few variants of full affinity for experimental validation. The performance we accomplish on composite textured images is excellent, and the results on natural images are promising.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.