Abstract

Modeling host/pathogen interactions provides insight into immune defects that allow bacteria to overwhelm the host, mechanisms that allow vaccine strategies to be successful, and illusive interactions between immune components that govern the immune response to a challenge. However, even simplified models require a fairly high dimensional parameter space to be explored. Here we use global sensitivity analysis for parameters in a simple model for biofilm infections in mice. The results indicate which parameters are insignificant and are 'frozen' to yield a reduced model. The reduced model replicates the full model with high accuracy, using approximately half of the parameter space. We used the sensitivity to investigate the results of the combined biological and mathematical experiments for osteomyelitis. We are able to identify parts of the compartmentalized immune system that were responsible for each of the experimental outcomes. This model is one example for a technique that can be used generally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.