Abstract

Capacitive deionization (CDI) technologies couple electronic and ionic charge storage, enabling improved thermodynamic efficiency of brackish desalination by recovering energy released during discharge. However, insight into CDI has been limited by discrete experimental observations at low desalination depths (Δ c, typically reducing influent salinity by 10 mM or less). In this study, the performance and sensitivity of three common CDI configurations [standard CDI, membrane CDI (MCDI), and flowable electrode CDI (FCDI)] were evaluated across the operational and material design landscape by varying eight common input parameters (electrode thickness, influent concentration, current density, electrode flow rate, specific capacitance, contact resistance, porosity, and fixed charge). All combinations of designs were evaluated for two influent concentrations with a calibrated and validated one-dimensional (1-D) porous electrode model. Sensitivity analyses were carried out via Monte Carlo and Morris methods, focusing on six performance metrics. Across all performance metrics, high sensitivity was observed to input parameters which impact cycle length (current, resistance, and capacitance). Simulations demonstrated the importance of maintaining both charge and round-trip efficiencies, which limit the performance of CDI and FCDI, respectively. Accounting for energy recovery, only MCDI was capable of operating at thermodynamic efficiencies similar to reverse osmosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.