Abstract

Vibration energy harvesting using the direct effect of piezoelectricity has attracted increasing attention during the last two decades. Different modeling techniques have been applied to describe the electromechanical coupling effect of a piezoelectric harvester and to predict its electrical output. This study aims to identify the most important properties of both harvester substrate material and piezoelectric material that cause uncertainty in the predicted performances of the harvester. Global sensitivity analysis, applied in this paper, is a promising method used to identify systems parameters which have significant impact on the system output. In this paper, the Elementary Effects method (EEs), a particular implementation of the global sensitivity method, is used to identify the impact of substrate and piezoelectric material properties on the voltage frequency response function of a typical bimorph piezoelectric energy harvester with fixed geometry. With a small number of model evaluations at selected ranges of material properties, it has been found that the elastic modulus and density of the piezoelectric layer are the parameters which lead to the largest output variability. Furthermore, it has been found that the order of importance of the parameters can change from short-circuit to open-circuit conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call