Abstract

The probability of failure of a load bearing steel member is investigated using a new type of global sensitivity analysis subordinated to contrasts. The main objective of the probability-oriented sensitivity analysis is structural reliability. The structural reliability methodology uses random variables as inputs. The subject of interest is the identification of those random variables that are most important when the limit state of a steel bridge member is reached. The limit state is defined by the occurrence of brittle fracture, which results from stress changes caused by multiple repeated loads. The propagation of a single-edge crack from initial to critical size is analysed using linear fracture mechanics. The failure probability and sensitivity indices are calculated using sampling-based methods. The sensitivity indices are estimated using double-nested-loop simulation of the Latin Hypercube Sampling method. New findings indicate that interaction effects among input variables strongly influence the probability of failure especially at the beginning of the operating period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call