Abstract
Today, in different countries, there exist sites with contaminated groundwater formed as a result of inappropriate handling or disposal of hazardous materials or wastes. Numerical modeling of such sites is an important tool for a correct prediction of contamination plume spreading and an assessment of environmental risks associated with the site. Many uncertainties are associated with a part of the parameters and the initial conditions of such environmental numerical models. Statistical techniques are useful to deal with these uncertainties. This paper describes the methods of uncertainty propagation and global sensitivity analysis that are applied to a numerical model of radionuclide migration in a sandy aquifer in the area of the RRC “Kurchatov Institute” radwaste disposal site in Moscow, Russia. We consider 20 uncertain input parameters of the model and 20 output variables (contaminant concentration in the observation wells predicted by the model for the end of 2010). Monte Carlo simulations allow calculating uncertainty in the output values and analyzing the linearity and the monotony of the relations between input and output variables. For the non monotonic relations, sensitivity analyses are classically done with the Sobol sensitivity indices. The originality of this study is the use of modern surrogate models (called response surfaces), the boosting regression trees, constructed for each output variable, to calculate the Sobol indices by the Monte Carlo method. It is thus shown that the most influential parameters of the model are distribution coefficients and infiltration rate in the zone of strong pipe leaks on the site. Improvement of these parameters would considerably reduce the model prediction uncertainty.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Stochastic Environmental Research and Risk Assessment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.