Abstract

In the paper, the global optimization problem of a multidimensional black-box function satisfying the Lipschitz condition over a hyperinterval with an unknown Lipschitz constant is considered. A new efficient algorithm for solving this problem is presented. At each iteration of the method a number of possible Lipschitz constants are chosen from a set of values varying from zero to infinity. This idea is unified with an efficient diagonal partition strategy. A novel technique balancing usage of local and global information during partitioning is proposed. A new procedure for finding lower bounds of the objective function over hyperintervals is also considered. It is demonstrated by extensive numerical experiments performed on more than 1600 multidimensional test functions that the new algorithm shows a very promising performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.