Abstract

Global warming has altered the energy budget and water cycle processes of the land–atmosphere system, which has resulted in significant effects on precipitation extremes. Previous studies have identified a hook structure between near-surface temperature and precipitation extremes, in which extremes increase with temperature rises and decline thereafter. However, the underlying physical mechanisms of this association remain poorly understood. In this study, global-scale responses of precipitation extremes to near-surface air temperature (SAT) and dew point temperature (DPT) were quantified using the ERA5 reanalysis dataset. The results reveal a hook structure between precipitation extremes scaling and temperature, for both SAT and DPT, over many regions worldwide. The peak point temperature (T pp) ranges from 15 °C to 25 °C, increasing as latitude decreased. The association of precipitation extremes with SAT is negative in many areas in the tropics, whereas that with DPT is almost always positive; this suggests that moisture supply is the main factor limiting precipitation at higher surface temperatures. The hook structure and scaling rates incompatible with Clausius–Clapeyron scaling are associated with various factors including precipitation duration, total column water vapour, convective available potential energy, and relative humidity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.