Abstract

Synapse elimination is crucial for precise neural circuit formation during postnatal development. We examined how relative differences in synaptic strengths among competing inputs and/or absolute synaptic strengths contribute to climbing fiber (CF) to Purkinje cell (PC) synapse elimination in the cerebellum. We generated mice with PC-selective deletion of stargazin (TARP γ-2), the major AMPA receptor auxiliary subunit in PCs (γ-2 PC-KO mice). Whereas relative differences between "strong" and "weak" CF-mediated postsynaptic response are preserved, absolute strengths of CF inputs are scaled down globally in PCs of γ-2 PC-KO mice. Although the early phase of CF elimination is normal, dendritic translocation of the strongest CF and the late phase of CF elimination that requires Ca(2+)-dependent activation of Arc/Arg3.1 in PCs are both impaired in γ-2 PC-KO mice. We conclude that, although relative differences in CF synaptic inputs are initially essential, proper synaptic scaling is crucial for accomplishing CF synapse elimination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.