Abstract

Extreme surface ocean waves are often primary drivers of coastal flooding and erosion over various time scales. Hence, understanding future changes in extreme wave events owing to global warming is of socio-economic and environmental significance. However, our current knowledge of potential changes in high-frequency (defined here as having return periods of less than 1 year) extreme wave events are largely unknown, despite being strongly linked to coastal hazards across time scales relevant to coastal management. Here, we present global climate-modeling evidence, based on the most comprehensive multi-method, multi-model wave ensemble, of projected changes in a core set of extreme wave indices describing high-frequency, extra-tropical storm-driven waves. We find changes in high-frequency extreme wave events of up to ∼50%–100% under RCP8.5 high-emission scenario; which is nearly double the expected changes for RCP4.5 scenario, when globally integrated. The projected changes exhibit strong inter-hemispheric asymmetry, with strong increases in extreme wave activity across the tropics and high latitudes of the Southern Hemisphere region, and a widespread decrease across most of the Northern Hemisphere. We find that the patterns of projected increase across these extreme wave events over the Southern Hemisphere region resemble their historical response to the positive anomaly of the Southern Annular Mode. Our findings highlight that many countries with low-adaptive capacity are likely to face increasing exposure to much more frequent extreme wave events in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.