Abstract

In this paper, a global sliding mode control scheme is proposed for a helicopter with input time delay and disturbance. We proposed a new method for integral sliding surface. By the design of dynamic nonlinear sliding mode function, the controller has the advantage of eliminating the reaching movement of traditional sliding mode control, overcoming the effect of the disturbance and time delay. The system state variables reached the sliding surface at the very beginning by means of designing a dynamic nonlinear sliding mode function, and moved to the expected state under the control of control law. The efficiency of the proposed method is demonstrated by simulation results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.