Abstract

The global robust servomechanism problem (alternatively, global robust output regulation problem) for lower triangular systems has been studied for two special cases. The first case assumes that the systems only contain polynomial nonlinearities, and the second case limits the exogenous signals and the unknown parameters to be within a known bounded set. This paper presents the solvability conditions of the global robust servomechanism problem for the lower triangular systems for the most general case where neither of the above two assumptions is needed. Our approach consists of two steps. In the first step, we convert the problem into a global adaptive regulation problem for lower triangular systems subject to both dynamic and static uncertainties. In the second step, we derive the solvability conditions of the problem by appealing to the recent result on the solvability of the global adaptive regulation problem for lower triangular systems with both dynamic and static uncertainties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.