Abstract

Understanding the pathogenesis of complex diseases is aided by precise identification of the genes responsible. Many computational methods have been developed to prioritize candidate disease genes, but coverage of functional annotations may be a limiting factor for most of these methods. Here, we introduce a global candidate gene prioritization approach that considers information about network properties in the human protein interaction network and risk transformative contents from known disease genes. Global risk transformative scores were then used to prioritize candidate genes. This method was introduced to prioritize candidate genes for prostate cancer. The effectiveness of our global risk transformative algorithm for prioritizing candidate genes was evaluated according to validation studies. Compared with ToppGene and random walk-based methods, our method outperformed the two other candidate gene prioritization methods. The generality of our method was assessed by testing it on prostate cancer and other types of cancer. The performance was evaluated using standard leave-one-out cross-validation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.