Abstract

We study compact complex 3-manifolds M admitting a (locally homogeneous) holomorphic Riemannian metric g. We prove the following: (i) If the Killing Lie algebra of g has a non trivial semi-simple part, then it preserves some holomorphic Riemannian metric on M with constant sectional curvature; (ii) If the Killing Lie algebra of g is solvable, then, up to a finite unramified cover, M is a quotient Γ\G, where Γ is a lattice in G and G is either the complex Heisenberg group, or the complex SOL group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.