Abstract
Stroke is a cerebrovascular disease with high prevalence and mortality, and upper limb hemiparesis is a major factor limiting functional recovery in stroke patients. Improvement of motor function in stroke patients through various forms of constraint-induced movement therapy (CITM) has been recognized as safe and effective in recent years. This research field lacks a comprehensive systematic and clear vein combing analysis, analyzing the literature research of CIMT in the field of rehabilitation in the past three decades, summarizing the research hotspots and cutting-edge trends in this field, in an effort to offer ideas and references for subsequent researchers. Relevant literature on CIMT in rehabilitation was collected from 1996 to 2024 within the Web of Science database's core dataset by using CiteSpace6.1, VOSviewer1.6.18, R-bibliometrix4.6.1, Pajek5.16, Scimago Graphica 1.0.26 software for visualization and analysis. There were 970 papers in all United States was ranked first with 401 papers. Alabama Univ was ranked first for institutions with 53 papers. Neurorehabilitation and Neural Repair was ranked first for journals with 78 papers, and Taub E was ranked first for author publications with 64 papers. Research keywords were CIMT, stroke rehabilitation, upper extremity function, lower extremity gait balance, randomized controlled trials, physical therapy techniques (transcranial magnetic stimulation and sensory amplitude electrical stimulation), primary motor cortex plasticity, lateral dominance (spatial behaviors), cerebral vascular accidents, activities of daily living, hand function, disability, functional restoration, bimanual training, aphasia, acquired invalidity, type A Botulinum toxin and joystick riding toys. The current state of research shows that CIMT still has a vast potential for development in the field of rehabilitation research. The research hotspots are the clinical efficacy of CIMT combined with other therapies (botulinum toxin type A, transcranial direct current stimulation, virtual reality, mirror therapy, robotic-assisted) to enhance the functionality of upper limb hemiparesis in stroke patients, the mechanism of CIMT to improve the plasticity of the motor cortex through electrophysiological and imaging methods, and improvement of lower limb gait balance function in stroke patients and aphasia applications, the optimal intervention time and dose, and exploration of CIMT in new settings such as robot-assisted, telemedicine, and home rehabilitation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.