Abstract

The matrix (MA) domain of HIV-1 Gag plays key roles in membrane targeting of Gag, and envelope (Env) glycoprotein incorporation into virions. Although a trimeric MA structure has been available since 1996, evidence for functional MA trimers has been elusive. The mechanism of HIV-1 Env recruitment into virions likewise remains unclear. Here, we identify a point mutation in MA that rescues the Env incorporation defects imposed by an extensive panel of MA and Env mutations. Mapping the mutations onto the putative MA trimer reveals that the incorporation-defective mutations cluster at the tips of the trimer, around the perimeter of a putative gap in the MA lattice into which the cytoplasmic tail of gp41 could insert. By contrast, the rescue mutation is located at the trimer interface, suggesting that it may confer rescue of Env incorporation via modification of MA trimer interactions, a hypothesis consistent with additional mutational analysis. These data strongly support the existence of MA trimers in the immature Gag lattice and demonstrate that rescue of Env incorporation defects is mediated by modified interactions at the MA trimer interface. The data support the hypothesis that mutations in MA that block Env incorporation do so by imposing a steric clash with the gp41 cytoplasmic tail, rather than by disrupting a specific MA-gp41 interaction. The importance of the trimer interface in rescuing Env incorporation suggests that the trimeric arrangement of MA may be a critical factor in permitting incorporation of Env into the Gag lattice.

Highlights

  • Human immunodeficiency virus type 1 (HIV-1), like all replication-competent orthoretroviruses, encodes three main polyproteins – Gag, Pol and Env – which contain determinants necessary for particle assembly, enzymatic functions, and virus entry, respectively

  • As the modification of trimer interactions plays a role in the rescue of Env incorporation, we propose that MA trimerization and the organization of the MA lattice may be critical factors in Env incorporation

  • We propose that the trimeric arrangement of the MA domain of Pr55Gag plays an important role in HIV-1 Env glycoprotein incorporation into virus particles

Read more

Summary

Introduction

Human immunodeficiency virus type 1 (HIV-1), like all replication-competent orthoretroviruses, encodes three main polyproteins – Gag, Pol and Env – which contain determinants necessary for particle assembly, enzymatic functions, and virus entry, respectively. HIV-1 assembly occurs in a series of steps, driven by the Gag precursor protein Pr55Gag (for review, see [1]). The MA domain at the N-terminus of Pr55Gag directs cytoplasmic Gag to bind raft-like domains of the plasma membrane (PM) via specific recognition of phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] [2] (for review, [3]). MA binding to PI(4,5)P2, as well as Gag oligomerization, triggers a myristyl switch, exposing the myristic acid moiety covalently linked to the amino-terminus of MA [4,5]. The exposed myristic acid inserts into the phospholipid bilayer, anchoring Gag to the PM

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call