Abstract

The protozoan parasite Leishmania possesses an intrinsic ability to modulate a multitude of pathways in the host, toward aiding its own proliferation. In response, the host reprograms its cellular, immunological, and metabolic machinery to evade the parasite's lethal impact. Besides inducing various antioxidant signaling pathways to counter the elevated stress response proteins like heme oxygenase-1 (HO-1), Leishmania also attempts to delay host cell apoptosis by promoting anti-apoptotic proteins like Bcl-2. The downstream modulation of apoptotic proteins is regulated by effector pathways, including the PI3K/Akt survival pathway, the mitogen-activated protein kinases (MAPKs) signaling pathway, and STAT phosphorylation. In addition, Leishmania assists in its infection in a time-dependent manner by modulating the level of various proteins of autophagic machinery. Immune effector cells, such as mast cells and neutrophils, entrap and kill the pathogen by secreting various granular proteins. In contrast, the host macrophages exert their leishmanicidal effect by secreting various cytokines, such as IL-2, IL-12, etc. An interplay of various signaling pathways occurs in an organized network that is highly specific to both pathogen and host species. This Review analyzes the modulation of expression of proteins, including the cytokines, providing a realistic approach toward understanding the pathophysiology of disease and predicting some prominent markers for disease intervention and vaccine support strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.