Abstract

In the presence of both random and interval hybrid uncertainty (RI-HU), investigating global reliability sensitivity (GRS) can identify the effect of random input on the structural safety globally. To this end, this work establishes the GRS index model and its corresponding efficient solution, and the innovation includes three aspects. Firstly, the GRS of the random input is defined by the average absolute difference between the failure probability upper bound (FP-UB) and the conditional FP-UB on the fixed random input under the RI-HU, and it can reflect the effect of the fixed random input on the structural safety. Secondly, the conditional FP-UB on fixing the random input at the realization is approximated by the conditional FP-UB on fixing the random input in a differential interval. Then the conditional probability theorem can be employed to convert estimating the GRS into the state recognition of the samples, which is the by-product of estimating the FP-UB by the numerical simulation. Finally, by the strategy of surrogating the performance function twice, the meta-importance sampling method is developed to efficiently estimate the GRS in presence of the RI-HU. The rationality of the proposed GRS index model and the efficiency of the developed estimation method are fully verified by the numerical and engineering examples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call