Abstract

With the prevalence of accessible depth sensors, dynamic skeletons have attracted much attention as a robust modality for action recognition. Convolutional neural networks (CNNs) excel at modeling local relations within local receptive fields and are typically inefficient at capturing global relations. In this article, we first view the dynamic skeletons as a spatio-temporal graph (STG) and then learn the localized correlated features that generate the embedded nodes of the STG by message passing. To better extract global relational information, a novel model called spatial–temporal graph interaction networks (STG-INs) is proposed, which perform long-range temporal modeling of human body parts. In this model, human body parts are mapped to an interaction space where graph-based reasoning can be efficiently implemented via a graph convolutional network (GCN). After reasoning, global relation-aware features are distributed back to the embedded nodes of the STG. To evaluate our model, we conduct extensive experiments on three large-scale datasets. The experimental results demonstrate the effectiveness of our proposed model, which achieves the state-of-the-art performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call