Abstract

The two-dimensional (2D) incompressible Boussinesq equations model geophysical fluids and play an important role in the study of the Raleigh–Bernard convection. Mathematically this 2D system retains some key features of the 3D Navier–Stokes and Euler equations such as the vortex stretching mechanism. The issue of whether the 2D Boussinesq equations always possess global (in time) classical solutions can be difficult when there is only partial dissipation or no dissipation at all. This paper obtains the global regularity for two partial dissipation cases and proves several global a priori bounds for two other prominent partial dissipation cases. These results take us one step closer to a complete resolution of the global regularity issue for all the partial dissipation cases involving the 2D Boussinesq equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.