Abstract

We study the magnetic Bénard problem in two‐dimensional space with generalized dissipative and diffusive terms, namely, fractional Laplacians and logarithmic supercriticality. Firstly, we show that when the diffusive term for the magnetic field is a full Laplacian, the solution initiated from data sufficiently smooth preserves its regularity as long as the power of the fractional Laplacians for the dissipative term of the velocity field and the diffusive term of the temperature field adds up to 1. Secondly, we show that with zero dissipation for the velocity field and a full Laplacian for the diffusive term of the temperature field, the global regularity result also holds when the diffusive term for the magnetic field consists of the fractional Laplacian with its power strictly bigger than 1. Finally, we show that with no diffusion from the magnetic and the temperature fields, the global regularity result remains valid as long as the dissipation term for the velocity field has its strength at least at the logarithmically supercritical level. These results represent various extensions of previous work on both Boussinesq and magnetohydrodynamics systems. Copyright © 2016 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.