Abstract
This paper is about Lions’ open problem on density patches (Lions in Mathematical topics in fluid mechanics. Vol. 1, volume 3 of Oxford Lecture series in mathematics and its applications, Clarendon Press, Oxford University Press, New York, 1996): whether or not inhomogeneous incompressible Navier–Stokes equations preserve the initial regularity of the free boundary given by density patches. Using classical Sobolev spaces for the velocity, we first establish the propagation of $${C^{1+\gamma}}$$ regularity with $${0 < \gamma < 1}$$ in the case of positive density. Furthermore, we go beyond this to show the persistence of a geometrical quantity such as the curvature. In addition, we obtain a proof for $${C^{2+\gamma}}$$ regularity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.