Abstract

We consider the full irrotational water waves system with surface tension and no gravity in dimension two (the capillary waves system), and prove global regularity and modified scattering for suitably small and localized perturbations of a flat interface. An important point of our analysis is to develop a sufficiently robust method (the “quasilinear I-method”) which allows us to deal with strong singularities arising from time resonances in the applications of the normal form method (the so-called “division problem”). As a result, we are able to consider a suitable class of perturbations with finite energy, but no other momentum conditions. Part of our analysis relies on a new treatment of the Dirichlet-Neumann operator in dimension two which is of independent interest. As a consequence, the results in this paper are self-contained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.