Abstract

We prove the existence of global regular solutions to the Navier-Stokes equations in an axially symmetric domain in $\mathbb R^3$ and with boundary slip conditions. We assume that initial angular component of velocity and angular component of the external force and angular derivatives of the cylindrical components of initial velocity and of the external force are sufficiently small in corresponding norms. Then there exists a solution such that velocity belongs to $W_{5/2}^{2,1}(\Omega^T)$ and gradient of pressure to $L_{5/2}(\Omega^T)$, and we do not have restrictions on $T$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.