Abstract
This paper casts the global registration of multiple 3D point-sets into a low-rank and sparse decomposition problem. This neat mathematical formulation caters for missing data, outliers and noise, and it benefits from a wealth of available decomposition algorithms that can be plugged-in. Experimental results show that this approach compares favourably to the state of the art in terms of precision and speed, and it outperforms all the analysed techniques as for robustness to outliers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.